写在前面
以前本站的疫情可视化只是一个简单的html页面,使用crontab定时任务更新数据,每天早上八点更新一次,这种方式存在诸多弊端,主要是无法拓展更多功能,但也有明显的好处,占用资源很少,不会影响服务器性能,也不会对网站安全造成影响,添加或移除该功能的时候也简单。总之,使用静态页面更像是在混吃等死。三天前我在查找资料的时候翻到了pyecharts中文文档,文档中介绍了如何将pyecharts整合到web框架,而且很贴心的给出前后端分离的教程,所以,我就依葫芦画瓢的搞了一通,替换掉了原本的静态页面。
准备工作
#创建虚拟环境
py -3 -m venv myproject_env #Windows
Virtualenv -p /usr/bin/python3 myproject_env #Linux
#启动虚拟环境
\myproject_env\Scripts\activate #Windows
source myproject_env/bin/activate #Linux
#安装Django
pip install Django==3.1.3
#创建项目
django-admin startproject myproject
创建APP
#切换目录
cd myproject
#创建app
python manage.py startapp echarts
创建完成后修改myproject/settings.py,将echarts添加到INSTALLED_APPS中:
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'echarts',
'rest_framework',
]
其他依赖
djangorestframework==3.12.2
lxml==4.6.2
openpyxl==3.0.5
pyecharts==1.9.0
requests==2.25.1
更改主路由
myproject/urls.py
from django.contrib import admin
from django.urls import path,include
urlpatterns = [
path('admin/', admin.site.urls),
path('echarts/',include('echarts.urls',namespace = 'echarts')),
]
更改app视图
echarts/views.py
#网页向导与重定向
from django.shortcuts import render,redirect
#json字典
import json
#网页响应
from django.http import HttpResponse
#前后端分离需要使用该类视图
from rest_framework.views import APIView
#爬虫代码,抓取数据
from . import data_get
#绘图
from . import data_map
#将文本中的数据渲染为字典
import ast
# Create your views here.
#以下三个函数来自pyecharts文档,主要作用是渲染绘图数据
#json_error未使用
def response_as_json(data):
json_str = json.dumps(data)
response = HttpResponse(
json_str,
content_type = 'application/json',
)
response["Access-Control-Allow-Origin"] = '*'
return response
def json_response(data,code=200):
data = {
"code":code,
"msg":"success",
"data":data,
}
return response_as_json(data)
def json_error(error_string = 'error',code=500,**kwargs):
data = {
"code":code,
"msg":error_string,
"data":{},
}
data.update(kwargs)
return response_as_json(data)
#获取绘图数据,定义为全局变量
def plot_map(data):
global ct_map, cs_map,fi_map,gt_map,gs_map,fte_map
#获取数据表
wb_china = data_get.china_total_data(data)
wb_global = data_get.global_total_data(data)
#获取地图对象
ct_map, cs_map = data_map.china_total_map(wb_china)
fi_map = data_map.china_daily_map(wb_china)
gt_map, gs_map = data_map.global_total_map(wb_global)
fte_map = data_map.foreign_daily_map(wb_global)
JsonResponse = json_response
JsonError = json_error
#不需要更新时从json文本中读取数据
f = open('./echarts/covid_19.json','r',encoding = 'utf-8')
#渲染为字典
data = ast.literal_eval(f.read())
#释放文件
f.close()
#得到绘图对象
plot_map(data)
#点击更新时从百度获取最新数据,并在外部更新json文本,同时重新获取绘图对象
def update(request):
data = data_get.init()
plot_map(data)
#重定向页面
return redirect('echarts:covid_19')
#绘制中国累计确诊地图
class CtView(APIView):
def get(self,request,*args,**kwargs):
global ct_map
return JsonResponse(json.loads(ct_map))
#绘制中国现有确诊地图
class CsView(APIView):
def get(self,request,*args,**kwargs):
global cs_map
return JsonResponse(json.loads(cs_map))
#绘制中国疫情走势地图
class CdView(APIView):
def get(self,request,*args,**kwargs):
global fi_map
return JsonResponse(json.loads(fi_map))
#绘制全球累计确诊地图
class GtView(APIView):
global gt_map
def get(self,request,*args,**kwargs):
return JsonResponse(json.loads(gt_map))
#绘制全球现有确诊地图
class GsView(APIView):
def get(self,request,*args,**kwargs):
global gs_map
return JsonResponse(json.loads(gs_map))
#绘制境外疫情走势(不含中国)
class GdView(APIView):
def get(self,request,*args,**kwargs):
global gs_map
return JsonResponse(json.loads(fte_map))
#主页面
class IndexView(APIView):
def get(self,request,*args,**kwargs):
return render(request,'echarts/covid_19.html')
爬虫代码
在echarts目录下新建data_get.py:
import json
import openpyxl
import requests
from lxml import etree
def init():
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.116 Safari/537.36'
}
url = 'https://voice.baidu.com/act/newpneumonia/newpneumonia/'
response = requests.get(url = url,headers = headers)
tree = etree.HTML(response.text)
dict1 = tree.xpath('//script[@id="captain-config"]/text()')
dict2 = json.loads(dict1[0])
f = open('./echarts/covid_19.json','w',encoding = 'utf-8')
f.write(str(dict2))
f.close()
return dict2
def china_total_data(data):
wb = openpyxl.Workbook()
ws_china = wb.active
ws_china.title = '中国省份疫情数据'
ws_china.append(['省/直辖市/自治区/行政区','现有确诊','累计确诊','累计治愈',
'累计死亡','现有确诊增量','累计确诊增量',
'累计治愈增量','累计死亡增量'])
china = data['component'][0]['caseList']
for province in china:
ws_china.append([
province['area'],
province['curConfirm'],
province['confirmed'],
province['crued'],
province['died'],
province['curConfirmRelative'],
province['confirmedRelative'],
province['curedRelative'],
province['diedRelative']
])
ws_city = wb.create_sheet('中国城市疫情数据')
ws_city.append([
'城市','现有确诊','累计确诊','累计治愈','累计死亡','累计确诊增量'
])
for province in china:
for city in province['subList']:
if 'curConfirm' not in city:
city['curConfirm'] = '0'
if city['crued'] == '':
city['crued'] = '0'
if city['died'] == '':
city['died'] = '0'
if 'confirmedRelative' not in city:
city['confirmedRelative'] = '0'
ws_city.append([
city['city'],'0',city['confirmed'],
city['crued'],city['died'],city['confirmedRelative']
])
time_domestic = data['component'][0]['mapLastUpdatedTime']
ws_time = wb.create_sheet('中国疫情数据更新时间')
ws_time.column_dimensions['A'].width = 22
ws_time.append(['中国疫情数据更新时间'])
ws_time.append([time_domestic])
return china_daily_data(data,wb)
def global_total_data(data):
wb = openpyxl.Workbook()
ws_global = wb.active
ws_global.title = '全球各国疫情数据'
countries = data['component'][0]['caseOutsideList']
ws_global.append(['国家','现有确诊','累计确诊','累计治愈','累计死亡','累计确诊增量'])
for country in countries:
ws_global.append([
country['area'],
country['curConfirm'],
country['confirmed'],
country['crued'],
country['died'],
country['confirmedRelative']
])
continent = data['component'][0]['globalList']
for area in continent:
ws_foreign = wb.create_sheet(area['area'] + '疫情数据')
ws_foreign.append(['国家','现有确诊','累计确诊','累计治愈','累计死亡','累计确诊增量'])
for country in area['subList']:
ws_foreign.append([
country['country'],
country['curConfirm'],
country['confirmed'],
country['crued'],
country['died'],
country['confirmedRelative']
])
ws1,ws2 = wb['全球各国疫情数据'],wb['亚洲疫情数据']
original_data = data['component'][0]['summaryDataIn']
add_china_data = ['中国',
original_data['curConfirm'],
original_data['confirmed'],
original_data['cured'],
original_data['died'],
original_data['confirmedRelative']
]
ws1.append(add_china_data)
ws2.append(add_china_data)
time_foreign = data['component'][0]['foreignLastUpdatedTime']
ws_time = wb.create_sheet('全球疫情数据更新时间')
ws_time.column_dimensions['A'].width = 22
ws_time.append(['全球疫情数据更新时间'])
ws_time.append([time_foreign])
return foreign_daily_data(data,wb)
def china_daily_data(data,wb):
ccd_dict = data['component'][0]['trend']
update_date = ccd_dict['updateDate']
china_confirmed = ccd_dict['list'][0]['data']
china_crued = ccd_dict['list'][2]['data']
china_died = ccd_dict['list'][3]['data']
china_surplus = []
for i in range(len(update_date)):
surplus = china_confirmed[i] - china_crued[i] - china_died[i]
china_surplus.append(surplus)
ws_china_surplus = wb.create_sheet('中国每日现有确诊数据')
ws_china_surplus.append(['日期','数据'])
for data in zip(update_date,china_surplus):
ws_china_surplus.append(data)
ws_china_confirmed = wb.create_sheet('中国每日累计确诊数据')
ws_china_confirmed.append(['日期','数据'])
for data in zip(update_date,china_confirmed):
ws_china_confirmed.append(data)
ws_china_crued = wb.create_sheet('中国每日累计治愈数据')
ws_china_crued.append(['日期','数据'])
for data in zip(update_date,china_crued):
ws_china_crued.append(data)
ws_china_died = wb.create_sheet('中国每日累计死亡数据')
ws_china_died.append(['日期','数据'])
for data in zip(update_date,china_died):
ws_china_died.append(data)
return wb
def foreign_daily_data(data,wb):
te_dict = data['component'][0]['allForeignTrend']
update_date = te_dict['updateDate']
foreign_confirmed = te_dict['list'][0]['data']
foreign_crued = te_dict['list'][1]['data']
foreign_died = te_dict['list'][2]['data']
foreign_surplus = []
for i in range(len(update_date)):
surplus = foreign_confirmed[i] - foreign_crued[i] - foreign_died[i]
foreign_surplus.append(surplus)
ws_foreign_surplus = wb.create_sheet('境外每日现有确诊数据')
ws_foreign_surplus.append(['日期','数据'])
for data in zip(update_date,foreign_surplus):
ws_foreign_surplus.append(data)
ws_foreign_confirmed = wb.create_sheet('境外每日累计确诊数据')
ws_foreign_confirmed.append(['日期','数据'])
for data in zip(update_date,foreign_confirmed):
ws_foreign_confirmed.append(data)
ws_foreign_crued = wb.create_sheet('境外每日累计治愈数据')
ws_foreign_crued.append(['日期','数据'])
for data in zip(update_date,foreign_crued):
ws_foreign_crued.append(data)
ws_foreign_died = wb.create_sheet('境外每日累计死亡数据')
ws_foreign_died.append(['日期','数据'])
for data in zip(update_date,foreign_died):
ws_foreign_died.append(data)
return wb
if __name__ == '__main__':
init()
新建data_map.py:
import openpyxl
import ast
from pyecharts.charts import Map,Page,Line
from pyecharts.globals import CurrentConfig
import pyecharts.options as opts
import pyecharts.globals
import warnings
import json
warnings.filterwarnings("ignore")
pyecharts.globals._WarningControl.ShowWarning = False
CurrentConfig.ONLINE_HOST = "./static/js/"
def china_total_map(wb):
ws_time = wb['中国疫情数据更新时间']
ws_data = wb['中国省份疫情数据']
ws_data.delete_rows(1)
province = []
curconfirm = []
surplus = []
for data in ws_data.values:
province.append(data[0])
surplus.append(data[1])
curconfirm.append(data[2])
time_china = ws_time['A2'].value
pieces = [
{'max':0,'min':0,'label':'0','color':'#FFFFFF'},
{'max':9,'min':1,'label':'1-9','color':'#FFE5DB'},
{'max':99,'min':10,'label':'10-99','color':'#FF9985'},
{'max':999,'min':100,'label':'100-999','color':'#F57567'},
{'max':9999,'min':1000,'label':'1000-9999','color':'#E64546'},
{'max':99999,'min':10000,'label':'>=10000','color':'#B80909'},
]
ct_map = (
Map()
.add(series_name = '累计确诊人数',data_pair = [list(z) for z in zip(province,curconfirm)],maptype = "china",is_map_symbol_show = False)
.set_global_opts(
title_opts = opts.TitleOpts(
title = "中国疫情数据(累计确诊)",
subtitle = '数据更新至:' + time_china + '\n\n来源:百度疫情实时大数据报告'),
visualmap_opts = opts.VisualMapOpts(max_ = 300,is_piecewise = True,pieces = pieces)
)
.dump_options_with_quotes()
)
cs_map = (
Map()
.add(series_name = '现有确诊人数',data_pair = [list(z) for z in zip(province,surplus)],maptype = "china",is_map_symbol_show = False)
.set_global_opts(
title_opts = opts.TitleOpts(
title = "中国疫情数据(现有确诊)",
subtitle = '数据更新至:' + time_china + '\n\n来源:百度疫情实时大数据报告'),
visualmap_opts = opts.VisualMapOpts(max_ = 300,is_piecewise = True,pieces = pieces)
)
.dump_options_with_quotes()
)
return ct_map,cs_map
def global_total_map(wb):
ws_time = wb['全球疫情数据更新时间']
ws_data = wb['全球各国疫情数据']
ws_data.delete_rows(1)
country = []
surplus = []
curconfirm = []
for data in ws_data.values:
country.append(data[0])
surplus.append(data[1])
curconfirm.append(data[2])
time_global = ws_time['A2'].value
pieces = [
{'max':0,'min':0,'label':'0','color':'#FFFFFF'},
{'max':49,'min':1,'label':'1-49','color':'#FFE5DB'},
{'max':99,'min':50,'label':'50-99','color':'#FFC4B3'},
{'max':999,'min':100,'label':'100-999','color':'#FF9985'},
{'max':9999,'min':1000,'label':'1000-9999','color':'#F57567'},
{'max':99999,'min':10000,'label':'10000-99999','color':'#E64546'},
{'max':999999,'min':100000,'label':'100000-999999','color':'#B80909'},
{'max':9999999,'min':1000000,'label':'1000000-9999999','color':'#BA0808'},
{'max':99999999,'min':10000000,'label':'>=10000000','color':'#F00000'}
]
name_map = {
"Somalia": "索马里",
"Liechtenstein": "列支敦士登",
"Morocco": "摩洛哥",
"W. Sahara": "西撒哈拉",
"Serbia": "塞尔维亚",
"Afghanistan": "阿富汗",
"Angola": "安哥拉",
"Albania": "阿尔巴尼亚",
"Andorra": "安道尔共和国",
"United Arab Emirates": "阿拉伯联合酋长国",
"Argentina": "阿根廷",
"Armenia": "亚美尼亚",
"Australia": "澳大利亚",
"Austria": "奥地利",
"Azerbaijan": "阿塞拜疆",
"Burundi": "布隆迪",
"Belgium": "比利时",
"Benin": "贝宁",
"Burkina Faso": "布基纳法索",
"Bangladesh": "孟加拉国",
"Bulgaria": "保加利亚",
"Bahrain": "巴林",
"Bahamas": "巴哈马",
"Bosnia and Herz.": "波斯尼亚和黑塞哥维那",
"Belarus": "白俄罗斯",
"Belize": "伯利兹",
"Bermuda": "百慕大",
"Bolivia": "玻利维亚",
"Brazil": "巴西",
"Barbados": "巴巴多斯",
"Brunei": "文莱",
"Bhutan": "不丹",
"Botswana": "博茨瓦纳",
"Central African Rep.": "中非共和国",
"Canada": "加拿大",
"Switzerland": "瑞士",
"Chile": "智利",
"China": "中国",
"Côte d'Ivoire": "科特迪瓦",
"Cameroon": "喀麦隆",
"Dem. Rep. Congo": "刚果(布)",
"Congo": "刚果(金)",
"Colombia": "哥伦比亚",
"Cape Verde": "佛得角",
"Costa Rica": "哥斯达黎加",
"Cuba": "古巴",
"N. Cyprus": "北塞浦路斯",
"Cyprus": "塞浦路斯",
"Czech Rep.": "捷克",
"Germany": "德国",
"Djibouti": "吉布提",
"Denmark": "丹麦",
"Dominican Rep.": "多米尼加",
"Algeria": "阿尔及利亚",
"Ecuador": "厄瓜多尔",
"Egypt": "埃及",
"Eritrea": "厄立特里亚",
"Spain": "西班牙",
"Estonia": "爱沙尼亚",
"Ethiopia": "埃塞俄比亚",
"Finland": "芬兰",
"Fiji": "斐济",
"France": "法国",
"Gabon": "加蓬",
"United Kingdom": "英国",
"Georgia": "格鲁吉亚",
"Ghana": "加纳",
"Guinea": "几内亚",
"Gambia": "冈比亚",
"Guinea-Bissau": "几内亚比绍",
"Eq. Guinea": "赤道几内亚",
"Greece": "希腊",
"Grenada": "格林纳达",
"Greenland": "格陵兰岛",
"Guatemala": "危地马拉",
"Guam": "关岛",
"Guyana": "圭亚那合作共和国",
"Honduras": "洪都拉斯",
"Croatia": "克罗地亚",
"Haiti": "海地",
"Hungary": "匈牙利",
"Indonesia": "印度尼西亚",
"India": "印度",
"Br. Indian Ocean Ter.": "英属印度洋领土",
"Ireland": "爱尔兰",
"Iran": "伊朗",
"Iraq": "伊拉克",
"Iceland": "冰岛",
"Israel": "以色列",
"Italy": "意大利",
"Jamaica": "牙买加",
"Jordan": "约旦",
"Japan": "日本",
"Siachen Glacier": "锡亚琴冰川",
"Kazakhstan": "哈萨克斯坦",
"Kenya": "肯尼亚",
"Kyrgyzstan": "吉尔吉斯斯坦",
"Cambodia": "柬埔寨",
"Korea": "韩国",
"Kuwait": "科威特",
"Lao PDR": "老挝",
"Lebanon": "黎巴嫩",
"Liberia": "利比里亚",
"Libya": "利比亚",
"Sri Lanka": "斯里兰卡",
"Lesotho": "莱索托",
"Lithuania": "立陶宛",
"Luxembourg": "卢森堡",
"Latvia": "拉脱维亚",
"Moldova": "摩尔多瓦",
"Madagascar": "马达加斯加",
"Mexico": "墨西哥",
"Macedonia": "马其顿",
"Mali": "马里",
"Malta": "马耳他",
"Myanmar": "缅甸",
"Montenegro": "黑山",
"Mongolia": "蒙古国",
"Mozambique": "莫桑比克",
"Mauritania": "毛里塔尼亚",
"Mauritius": "毛里求斯",
"Malawi": "马拉维",
"Malaysia": "马来西亚",
"Namibia": "纳米比亚",
"New Caledonia": "新喀里多尼亚",
"Niger": "尼日尔",
"Nigeria": "尼日利亚",
"Nicaragua": "尼加拉瓜",
"Netherlands": "荷兰",
"Norway": "挪威",
"Nepal": "尼泊尔",
"New Zealand": "新西兰",
"Oman": "阿曼",
"Pakistan": "巴基斯坦",
"Panama": "巴拿马",
"Peru": "秘鲁",
"Philippines": "菲律宾",
"Papua New Guinea": "巴布亚新几内亚",
"Poland": "波兰",
"Puerto Rico": "波多黎各",
"Dem. Rep. Korea": "朝鲜",
"Portugal": "葡萄牙",
"Paraguay": "巴拉圭",
"Palestine": "巴勒斯坦",
"Qatar": "卡塔尔",
"Romania": "罗马尼亚",
"Russia": "俄罗斯",
"Rwanda": "卢旺达",
"Saudi Arabia": "沙特阿拉伯",
"Sudan": "苏丹",
"S. Sudan": "南苏丹",
"Senegal": "塞内加尔",
"Singapore": "新加坡",
"Solomon Is.": "所罗门群岛",
"Sierra Leone": "塞拉利昂",
"El Salvador": "萨尔瓦多",
"Suriname": "苏里南",
"Slovakia": "斯洛伐克",
"Slovenia": "斯洛文尼亚",
"Sweden": "瑞典",
"Swaziland": "斯威士兰",
"Seychelles": "塞舌尔",
"Syria": "叙利亚",
"Chad": "乍得",
"Togo": "多哥",
"Thailand": "泰国",
"Tajikistan": "塔吉克斯坦",
"Turkmenistan": "土库曼斯坦",
"Timor-Leste": "东帝汶",
"Tonga": "汤加",
"Trinidad and Tobago": "特立尼达和多巴哥",
"Tunisia": "突尼斯",
"Turkey": "土耳其",
"Tanzania": "坦桑尼亚",
"Uganda": "乌干达",
"Ukraine": "乌克兰",
"Uruguay": "乌拉圭",
"United States": "美国",
"Uzbekistan": "乌兹别克斯坦",
"Venezuela": "委内瑞拉",
"Vietnam": "越南",
"Vanuatu": "瓦努阿图",
"Yemen": "也门",
"South Africa": "南非",
"Zambia": "赞比亚",
"Zimbabwe": "津巴布韦",
"Aland": "奥兰群岛",
"American Samoa": "美属萨摩亚",
"Fr. S. Antarctic Lands": "南极洲",
"Antigua and Barb.": "安提瓜和巴布达",
"Comoros": "科摩罗",
"Curaçao": "库拉索岛",
"Cayman Is.": "开曼群岛",
"Dominica": "多米尼加",
"Falkland Is.": "福克兰群岛马尔维纳斯",
"Faeroe Is.": "法罗群岛",
"Micronesia": "密克罗尼西亚",
"Heard I. and McDonald Is.": "赫德岛和麦克唐纳群岛",
"Isle of Man": "曼岛",
"Jersey": "泽西岛",
"Kiribati": "基里巴斯",
"Saint Lucia": "圣卢西亚",
"N. Mariana Is.": "北马里亚纳群岛",
"Montserrat": "蒙特塞拉特",
"Niue": "纽埃",
"Palau": "帕劳",
"Fr. Polynesia": "法属波利尼西亚",
"S. Geo. and S. Sandw. Is.": "南乔治亚岛和南桑威奇群岛",
"Saint Helena": "圣赫勒拿",
"St. Pierre and Miquelon": "圣皮埃尔和密克隆群岛",
"São Tomé and Principe": "圣多美和普林西比",
"Turks and Caicos Is.": "特克斯和凯科斯群岛",
"St. Vin. and Gren.": "圣文森特和格林纳丁斯",
"U.S. Virgin Is.": "美属维尔京群岛",
"Samoa": "萨摩亚"
}
gt_map = (
Map()
.add(series_name = '累计确诊人数',data_pair = [list(z) for z in zip(country,curconfirm)],maptype = "world",name_map = name_map,is_map_symbol_show = False)
.set_series_opts(label_opts = opts.LabelOpts(is_show = False))
.set_global_opts(
title_opts = opts.TitleOpts(
title = "全球疫情数据(累计确诊)",
subtitle = '数据更新至:' + time_global + '\n\n来源:百度疫情实时大数据报告'),
visualmap_opts = opts.VisualMapOpts(max_ = 300,is_piecewise = True,pieces = pieces)
)
.dump_options_with_quotes()
)
gs_map = (
Map()
.add(series_name = '现有确诊人数',data_pair = [list(z) for z in zip(country,surplus)],maptype = "world",name_map = name_map,is_map_symbol_show = False)
.set_series_opts(label_opts = opts.LabelOpts(is_show = False))
.set_global_opts(
title_opts = opts.TitleOpts(
title = "全球疫情数据(现有确诊)",
subtitle = '数据更新至:' + time_global + '\n\n来源:百度疫情实时大数据报告'),
visualmap_opts = opts.VisualMapOpts(max_ = 300,is_piecewise = True,pieces = pieces)
)
.dump_options_with_quotes()
)
return gt_map,gs_map
def china_daily_map(wb):
ws_china_confirmed = wb['中国每日累计确诊数据']
ws_china_surplus = wb['中国每日现有确诊数据']
ws_china_crued = wb['中国每日累计治愈数据']
ws_china_died = wb['中国每日累计死亡数据']
ws_china_confirmed.delete_rows(1)
ws_china_surplus.delete_rows(1)
ws_china_crued.delete_rows(1)
ws_china_died.delete_rows(1)
x_date = []
y_china_confirmed = []
y_china_surplus = []
y_china_crued = []
y_china_died = []
for china_confirmed in ws_china_confirmed.values:
y_china_confirmed.append(china_confirmed[1])
for china_surplus in ws_china_surplus.values:
y_china_surplus.append(china_surplus[1])
for china_crued in ws_china_crued.values:
x_date.append(china_crued[0])
y_china_crued.append(china_crued[1])
for china_died in ws_china_died.values:
y_china_died.append(china_died[1])
fi_map = (
Line(init_opts = opts.InitOpts(height = '420px'))
.add_xaxis(xaxis_data = x_date)
.add_yaxis(
series_name = '中国累计确诊人数',
y_axis = y_china_confirmed,
label_opts = opts.LabelOpts(is_show = False),
)
.add_xaxis(xaxis_data = x_date)
.add_yaxis(
series_name = '中国现有确诊人数',
y_axis = y_china_surplus,
label_opts = opts.LabelOpts(is_show = False),
)
.add_yaxis(
series_name = '中国累计治愈人数',
y_axis = y_china_crued,
label_opts = opts.LabelOpts(is_show = False),
)
.add_yaxis(
series_name = '中国累计死亡人数',
y_axis = y_china_died,
label_opts = opts.LabelOpts(is_show = False),
)
.set_global_opts(
title_opts = opts.TitleOpts(title = '中国COVID-19每日数据走势'),
legend_opts = opts.LegendOpts(pos_bottom = "bottom",orient = 'horizontal'),
tooltip_opts = opts.TooltipOpts(trigger = 'axis'),
yaxis_opts = opts.AxisOpts(
type_ = 'value',
axistick_opts = opts.AxisTickOpts(is_show = True),
splitline_opts= opts.SplitLineOpts(is_show = True),
),
xaxis_opts = opts.AxisOpts(type_ = 'category',boundary_gap=False),
)
.dump_options_with_quotes()
)
return fi_map
def foreign_daily_map(wb):
ws_foreign_confirmed = wb['境外每日累计确诊数据']
ws_foreign_surplus = wb['境外每日现有确诊数据']
ws_foreign_crued = wb['境外每日累计治愈数据']
ws_foreign_died = wb['境外每日累计死亡数据']
ws_foreign_confirmed.delete_rows(1)
ws_foreign_surplus.delete_rows(1)
ws_foreign_crued.delete_rows(1)
ws_foreign_died.delete_rows(1)
x_date = [] # 日期
y_foreign_confirmed = [] # 累计确诊
y_foreign_surplus = []
y_foreign_crued = [] # 累计治愈
y_foreign_died = [] # 累计死亡
for foreign_confirmed in ws_foreign_confirmed.values:
y_foreign_confirmed.append(foreign_confirmed[1])
for foreign_surplus in ws_foreign_surplus.values:
y_foreign_surplus.append(foreign_surplus[1])
for foreign_crued in ws_foreign_crued.values:
x_date.append(foreign_crued[0])
y_foreign_crued.append(foreign_crued[1])
for foreign_died in ws_foreign_died.values:
y_foreign_died.append(foreign_died[1])
fte_map = (
Line(init_opts=opts.InitOpts(height='420px'))
.add_xaxis(xaxis_data=x_date)
.add_yaxis(
series_name="境外累计确诊人数",
y_axis=y_foreign_confirmed,
label_opts=opts.LabelOpts(is_show=False),
)
.add_xaxis(xaxis_data=x_date)
.add_yaxis(
series_name="境外现有确诊人数",
y_axis=y_foreign_surplus,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="境外累计治愈人数",
y_axis=y_foreign_crued,
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="境外累计死亡人数",
y_axis=y_foreign_died,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="境外COVID-19每日数据走势"),
legend_opts=opts.LegendOpts(pos_bottom="bottom", orient='horizontal'),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
yaxis_opts=opts.AxisOpts(
type_="value",
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=True),
),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
)
.dump_options_with_quotes()
)
return fte_map
设置路由
在echarts目录下新建urls.py:
from django.urls import path
from . import views
app_name = 'echarts'
urlpatterns = [
path('covid-19/ctmap/', views.CtView.as_view(),name = 'covid_19_ctmap'),
path('covid-19/csmap/', views.CsView.as_view(),name = 'covid_19_csmap'),
path('covid-19/fimap/', views.CdView.as_view(),name = 'covid_19_fimap'),
path('covid-19/gtmap/', views.GtView.as_view(),name = 'covid_19_gtmap'),
path('covid-19/gsmap/', views.GsView.as_view(),name = 'covid_19_gsmap'),
path('covid-19/ftemap/', views.GdView.as_view(),name = 'covid_19_ftemap'),
path('covid-19/',views.IndexView.as_view(),name = 'covid_19'),
path('covid-19/update/',views.update,name = 'covid_19_update'),
]
引入静态文件
修改myproject/settings.py,在末尾添加如下内容:
STATICFILES_DIRS = (
os.path.join(BASE_DIR,'static'),
)
在根目录新建static目录,static目录中新建echarts目录,将静态文件放进去。
本文所需的静态文件可在Github获取。
HTML模版
修改myproject/settings.py,更新TEMPLATES:
在DIRS中添加:os.path.join(BASE_DIR,'templates')
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR,'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
在根目录下新建templates文件夹,在templates中新建echarts文件夹,在其中新建covid_19.html:
<!DOCTYEP html>
{% load static %}
<html lang="zh-cn">
<head>
<meta charset="UTF-8">
<title>疫情大数据报告</title>
<script src="{% static 'echarts/jquery/jquery.min.js' %}"></script>
<script type="text/javascript" src="{% static 'echarts/js/echarts.min.js' %}"></script>
<script type="text/javascript" src="{% static 'echarts/js/maps/china.js' %}"></script>
<script type="text/javascript" src="{% static 'echarts/js/maps/world.js' %}"></script>
<link rel="stylesheet" href="{% static 'echarts/bootstrap/css/bootstrap.min.css' %}">
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1-lts/dist/umd/popper.min.js"></script>
<script src="{% static 'echarts/jquery/jquery-3.5.1.js' %}"></script>
<!--script src="{% static 'echarts/layer/layer.js' %}"></script-->
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
<div class="container">
<p class="navbar-brand">疫情大数据报告</p>
<div>
<ul class="navbar-nav">
<li class="nav-item">
<a class="nav-link" href="{% url 'echarts:covid_19_update' %}">更新</a>
</li>
<li class="nav-item">
<a class="nav-link" href="{% url 'home' %}">返回</a>
</li>
</ul>
</div>
</div>
</nav>
</head>
<body>
<div class="container">
<div class="row">
<div class="col-2">
<a class="nav-link" href="https://github.com/ljc545w/myproject">Github</a>
</div>
<div class="col-9">
<div id="map1" style="height:550px;"></div>
<div id="map2" style="height:550px;"></div>
<div id="map3" style="height:370px;"></div>
<div id="map4" style="height:550px;"></div>
<div id="map5" style="height:550px;"></div>
<div id="map6" style="height:370px;"></div>
</div>
<div class="col-1"></div>
</div>
</div>
<script>
var chart1 = echarts.init(document.getElementById('map1'),'write',{renderer:'canvas'});
var chart2 = echarts.init(document.getElementById('map2'),'write',{renderer:'canvas'});
var chart3 = echarts.init(document.getElementById('map3'),'write',{renderer:'canvas'});
var chart4 = echarts.init(document.getElementById('map4'),'write',{renderer:'canvas'});
var chart5 = echarts.init(document.getElementById('map5'),'write',{renderer:'canvas'});
var chart6 = echarts.init(document.getElementById('map6'),'write',{renderer:'canvas'});
$(
function() {
fetchData(chart1,"ctmap");
fetchData(chart2,"csmap");
fetchData(chart3,"fimap");
fetchData(chart4,"gtmap");
fetchData(chart5,"gsmap");
fetchData(chart6,"ftemap");
}
);
function fetchData(chart,string) {
$.ajax({
type:"GET",
url:"/echarts/covid-19/" + string,
dataType:'json',
success:function (result) {
chart.setOption(result.data);
}
});
}
</script>
</body>
</html>
启动项目
#先需要运行一次data_get.py获取json文件
python /echarts/data_get.py
#启动
python manage.py runserver
在浏览器访问127.0.0.1:8000/echarts/covid-19/即可看到.
写在后面
虽然已经成功整合,在本地运行良好,但是服务器端存在缓存问题,点击更新后无法显示最新数据,需要多次刷新才行,这个问题留在以后解决。